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A Systematic Optimization Strategy

For Microwave Device Modelling
Andrew D. Patterson, Vincent F. Fusco, J. J. McKeown, and J. A, C. Stewart

Abstract+mall signal GaAs MESFET equivalent circuit mod-

els are typically very ill-conditioned since the error function

most often used is sensitive to some combinations of the model

components and extremely insensitive to other combinations.

Consequently the convergence of the parameter estimation rou-

tines used is slow and there is a good deal of uncertainty
associated with the optimized values of the insensitive compo-
nents. In this work the degree of ill-conditioning in the equivalent

circuit model is formally quantified using a systematically formu-
lated principal components sensitivity analysis procedure. Using

this procedure it is possible to estimate for the first time how
reliable the component values are in the optimized model. On this
basis the extraction of the MESFET equivalent circuit model is

compared using electrical model components and physical model

parameters. In addition a new optimization strategy is presented
which improves the condition number of the model so that rapid

convergence and accurate models are ensured. This technique

transforms the axes of the model from the equivalent circuit

components which are correlated to the uncorrelated principal
component axes which can be systematically scaled to eliminate
ill-conditioning. Using this technique it is possible to obtain
accurate estimates of the insensitive model parameters such as
the parasitic resistances without resorting to direct measurement
techniques.

I. INTRODUCTION

T HE SMALL-SIGNAL performance of MESFET devices

at microwave frequencies is most often characterized by

an equivalent circuit model, e.g. Fig. 1. This representation is

convenient for incorporation into circuit simulation programs

and can provide valuable insight into the operation of the de-

vice in a circuit environment. However, the equivalent circuit

can only be used to validate actual device phenomenological

behavior if physically representative component values can be

defined for individual devices.

The component values of the equivalent circuit model can

be extracted by various methods [1]–[6]. Usually the model

is obtained by optimizing the component values to give the

smallest sum of squares of errors between the model responses

and the small-signal S-parameters measured for the device.

However, typically there are several solutions that provide

close fits to the measured data and the final solution obtained is

dependent upon the initial values assigned to the components.
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Fig. 1. MESFET device model (dashed line indicates package device

elements).

There are two mechanisms by which multiple solutions

originate. The first mechanism arises because the error function

encompasses several distinct local minima. The optimization

terminates at the closest local minimum which is not neces-

sarily the absolute or global minimum [7], thus a sub-optimal

solution may be obtained. The second mechanism arises due

to the characteristic shape of the error function and the limited

numerical resolution of the extraction technique. In this work

we will show that in the area surrounding a minimum the error

function most often used is so flat, i.e. featureless, with respect

to several of the equivalent circuit elements that a large ramge

of solutions will give equally close fits. In other words the

error function suffers extremely poor sensitivity to changes

in the values of some circuit elements, consequently there is

uncertain y about the most physically realistic values for these

elements. Fig. 2 shows the actual shape of the error function

with respect to some of the components in the equivalent

circuit model of Fig. 1 (using the component values given

later in Table I). For example, in [6] it was found that the

gate lead inductance Lg in a 10 element device model could

typically vary more than 50% and still provide a satisfactory

fit. In the work reported here more complex models have been

used than those in [6] (from 13 up to 23 element models). This

exacerbates the problem since the error function is particularly

insensitive to some of the extra elements. The classical model

topologies currently in use also exhibit a uniqueness problem

[8]-[1 1]. The most significant example of this problem is

the electrical similarity of the resistances Ri and Rg. ‘This

has the- effect that the sum of the two components can be

determined but it is difficult to determine unique individual

values [11].

Uncertainty is also introduced into the equivalent circuit

component values by other phenomenon: Some uncertainty is

caused by small errors generated by the process of measur-
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Fig. 2. Shape of error function F(z) in the area of a minimum.

ing and de-embedding the device scattering parameters [12].

Another source of uncertainty is the simplistic equivalent

circuit topology used to represent actual devices. Reducing

the number of components in the model topology forces the

remaining components to take on less physically realistic

values in order to accommodate the missing components.

Also since insensitivity of the error function is responsible for

uncertainty in the component values, making the model more

complex by adding extra components (which are essentially

less sensitive fine tuning components) increases the degree

of uncertainty. The aim therefore is to create a model which

is sufficiently complex to represent the important physical

processes taking place in the device and yet simple enough

to allow fast and accurate extraction of the component values.

Since the local minima originating by the first mechanism

above are separate from each other it is possible to select

the global minimum, provided an exhaustive search of local

minima can be achieved [13]. In more complex models,

for some components, there is a wide range of values in

the area of the solution which provide equally good fits to

the measured data. Primarily this occurs because the error

function most often used suffers extremely poor sensitivity

to several of the equivalent circuit model components. The

uncertainty associated with this low component sensitivity

is more difficult to reduce than the uncertain y arising from

the multiple solutions produced by the local minima effects

mentioned above. If we can determine starting values that

lie within the area of attraction of the global minimum, then

global optimization is not required. Such starting values cart

be determined using a physics based equivalent circuit model

[14]–[16] in which the intrinsic component values are derived

from the technological device parameters. Since the sensitivity

characteristics of this type of model are more uniform the

uncertainty in component values arising from the second

mechanism above is also reduced.

The poor sensitivity of the error function to some model

parameters and the uniqueness problem associated with the

model topology both give rise to ill-conditioning. This in turn

causes inaccurate parameter estimates and slow convergence

when finite precision numerical optimization is employed.

Ill-conditioning in the device model is indicated by a large

Fig. 3. Contours of error function value F(x) with sensitivity directions.

condition number which is the ratio of the sensitivities of the

error function to changes in the directions comprising the most

and least sensitive combinations of parameters. Contours of

constant error function value are shown for an arbitrary ill-

conditioned least squares problem having 2 parameters xl and

Z2, Fig. 3. For this problem the most sensitive direction is OB

since the highest rate of change is along this direction, i.e. the

contours are closest together along this direction. Conversely

OA is the least sensitive direction. For typical MESFET model

topologies such as that in Fig. 1 it will be shown that the axis

of the least sensitive direction is about 100000 times longer

than the axis of the most sensitive direction. In other words the

contours lie virtually parallel to the least sensitive direction.

Since a relatively large move along the least sensitive direction

results in a very small change in error function value the

optimized solution will not be accurately defined along this

direction. The least sensitive direction may coincide with a

single parameter direction or it may be a combination of two

or more parameter directions. For the model considered in [6]

large variations in Lg had a small effect on the error function

therefore Lg itself was a direction of low sensitivity. Since

the effect upon the error function of an increase in Ri can

be nullified by a decrease of similar magnitude in Rg the

direction given by the vector Ri – Rg is also a direction of

low sensitivity.

Various heuristic techniques have been proposed for en-

hancing the convergence and accuracy of MESFET models

obtained by parameter extraction [8]–[9], but these are im-

plemented in an ad hoc fashion and do not resolve the

underlying problem of ill-conditioning. This paper demon-

strates how the degree of ill-conditioning in a given model

can be formally quantified using a systematically formulated

sensitivity analysis procedure. This analysis technique is used

as a model validation tool and also to establish confidence

in solutions obtained by numerical optimization. In addition,

a new optimization strategy is presented which improves the

condition number of the problem so that rapid convergence

and accurate solutions are ensured.
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II. MODEL PARTITIONING

Model partitioning is an established technique for improving

the performance of optimization of ill-conditioned models with

a large number of parameters. It has been shown that the

convergence of the numerical routines used and the accuracy

of the final solution obtained may be improved by partitioning

the model parameters into groups and optimizing each group

separately. If the grouping is performed so that parameters with

similar sensitivity are placed together then the condition num-

ber at each optimization step may be improved significantly.

For example, Kondoh [9] used an empirically derived program

of optimization steps in order to provide improved uniqueness

in the solutions obtained. Once the last step is completed

the procedure is repeated until a sufficiently accurate solution

is achieved. This method can be improved upon by using a

sensitivity analysis of the error function rather than the model

responses as a basis for grouping the parameters [11], [17]. The

improved method discussed here is not fixed like Kondoh’s

method but rather it is based upon an analysis of the shape of

the error function using the current model and measurement

data. In addition it provides better convergence especially

when bias dependence and statistical modelling are important.

Since the model parameters are correlated they can only

be grouped or partitioned in an ad hoc fashion, this can lead

to slow convergence; also there is no obviously intuitive way

to improve convergence by scaling the parameters. However,

these problems can be circumvented if more information about

the shape of the error function and correlation of the model

parameters can be obtained. This can be achieved using the

principal components sensitivity analysis which is described

next and which forms the formal underpinning for the work

reported here.

III. PRINCIPAL COMPONENTS SENSITIVITY ANALYSIS

A sensitivity analysis of the error function, Z’(Z), to vari-

ations only along the directions of the model parameter axes

gives an inadequate description of the model sensitivity char-

acteristics. This is so because the parameters are correlated

and the effect of combinations of parameters may be more

important than the effect of individual parameters. This is

illustrated by the least squares problem in Fig. 3 having

parameters xl and X2. For this problem the parameters $1 and

X2 are equally sensitive since the contours of constant F(Y) are

equally spaced along these two directions. However, the error

function is particularly insensitive to changes in the direction

OA and sensitive to changes in the direction OB. The problem

is therefore ill-conditioned, even though the optimizable model

parameters are equally sensitive. An optimized solution will

be precisely defined along the OB direction, but much less

precisely defined along the OA direction. Therefore because

there is some ambiguity in the value of OA there will also be

some ambiguity in the optimized values of both xl and X2.

The most relevant sensitivity directions are therefore different

from the parameter directions xl and xz, they are in fact the

OA and OB directions. These sensitivity directions are called

the principal components. A sensitivity analysis which defines

the principal components is now summarized [18]–[19].

The sum of squares function F(g) can be written as

m

‘i=l

A second-order analysis is employed because a first-order

analysis has no meaning since, by definition, the function is

stationary at a local minimum. The second order variation in

F(z) can be expressed in the neighborhood of

which we call Z*, as the Taylor series

F(&* + fig”) R F(&*) + &L’v~(2Z*)

+ +6&tv2F(z*)6x.

a solution,

The linear term in ti~t is small in the neighborhood of

a solution, and it is zero if Z* is an exact solution. The

principal components sensitivity analysis is an analysis of the
eigensystem of the Hessian matrix V2 F(z* ). Therefore we

need to calculate the hessian matrix for the particular case of

a least squares function. If we define the vector ~,

J=[.fl f2 ““” An]’
then we can write,

8F

[-1(9X1

1“1iF

–2—

!

afz—. ..
8X1

where J is the matrix with components J,j = 8 f, /8xj called
the Jacobian matrix of F(z). Differentiating again:

and so on for the other elements of the hessian matrix. By

separating into groups of first derivative terms and groups of

second derivative terms, we can write the hessian matrix G

as follows:

r . 1

[

.
G=2 J’J+~f,Gi

3=1 1

where Gi is the hessian matrix of the function fi.
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TABLE I

SENSITIVITY ANALYSIS PERFORMEDON THE SMALL-SIGNAL MESFET EQUIVALENT CIRCUIT
MODEL OF FIG. 1 FORA PLESSEY F20 4 x 75pm DEVICm Ird, = 5 V, Id, = 20%1~~,

m

Principal components directions [dgenveetom] expressed as unit vectors in terms of optimizable parameter directions

Cv (pF) 0,226 0.1 0.7 -0.6 -0.3 - 0.1

& (s2) 8,803 0.1 0.1 0.4 0.4 - 0.8

~ K2) 2.786 0.2 -0.1 0.9 -0.2 -0.2 -0.4

~ (*) 0.013 0.1 -0,3 0.9 -0.2

s. (Q) 1.784 0.4 0.6 0.5 0.2 -0.3

L, (nfi) 0.019 0.7 0.7 0,2

c,. (PF) 0.058 0.1 0.9 -0.1 -

C,g(PF} 0.030 0.9 -0.1 0.1 0.1 -

h (Q) 218,290 - - 0.1 0.1 0.6

Gn (mS) 27.477 - -0.4 -0.6 0.1 0.6 0.2 .0.3

L, (nH) 0.082 0.2 -0.6 08

R4 (Q] 2.534 - -

T [ps) 1.191

m ‘; 2E3 ‘E3 : l;O ‘2 ‘_Z ‘: ‘: ‘; : : ‘E-6

The Gauss-Newton algorithm uses the assumption that the

second term in this expression is negligible in comparison

to the first, i.e. the hessian is replaced by 2Jt J. Since the

absolute value of fi is expected to be small in the vicinity of

the minimum of I?(z) this is usually a good approximation

for small-signal MESFET modelling. Consequently we also

approximate the hessian matrix by 2Jt J for the principal

component sensitivity analysis, although the complete hessian

can also be used. Evaluation of the eigensystem of the hes-

sian matrix V21’(Z* ) yields a considerable amount of useful

information. When the hessian matrix is replaced by 2Jt J the

eigenvalues are non-negative since the Jk J is at worst positive

semi-definite. The hessian can be written as follows:

VzJ’(~*) = QDQ’

where Q is the orthonormal matrix of eigenvectors, and Q is

a diago~al matrix with D,z the ith eigenvalue of V2F(~* ).
Therefore, writing y = Qt 6z, we have— —

F(y) = F“ + ytQt~F* + ~ytDy.— — .

The contours of F(g) describe a family of ellipsoids whose

axis lengths are inv&sely proportional to ~D,,, and whose

axes lie along the y, axes, Fig. 3. The eigenvectors of
V2$’(~* ), i.e. the columns of the matrix Q, are unit vectors

which define the y, axes. These eigenvectors i.e. the yt axes

are the principal component directions. The eigenvector or

principal component corresponding to the direction of max-

imum eigenvalue D,i is the direction of maximum sensitivity

to changes in the value of ~“. Conversely the principal com-
ponent corresponding to the direction of minimum eigenvalue

DJj is the direction of minimum sensitivity to changes in

the value of ~“. Information concerning these two principal

component directions is most useful since they describe the

extremes of the model sensitivity characteristics. The number

of principal components is the same as the number of model

parameters. In Fig. 3, since yi is the direction of maximum

sensitivity, the position of the minimum of F(z) is likely to

be more accurately determined along yi than along y~ which is

the direction of minimum sensitivity. When Djj is very small

compared to Dii then the contours become nearly parallel to

the yj axis. In this case the solution may be satisfied by a large

number of solutions parallel to the y~ axis and the problem is

said to be ill-conditioned.

This type of analysis has the effect of completely eliminat-

ing the correlation between the model parameters. The first

principal component is the linear combination of parameters

for which the variance is maximum. The second principal

component also obeys this condition, subject to the overriding

condition that it is uncorrelated with the first, and so on for

the remaining principal components. The fact that the principal

components are uncorrelated will be an important factor when

the scaling of model parameters is considered later.

Table I shows a summary of results for a typical principal

components sensitivity analysis for the device topology given

in Fig. 1 using measurements from a Plessey F20 process

4 x 75&m device [20] biased at V& = 5 V, ~~, = 20% 1d~9.

The optimizable parameters and their final values are shown in

the first two columns to the left. The remaining columns give

the principal component directions (eigenvectors) expressed as

unit vectors in terms of the model parameters. For example, the

first principal component is the unit vector with components

().9 in the direction of the gate to drain capacitance (C&)

and 0.1 in the direction of the drain to source capacitance

(Cd.), i.e. 0.9C~, + O.lC&. The components of this prin-

cipal component direction along the other model parameter

directions are much smaller and have been omitted for the

purpose of presentation. This first principal component is the
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most sensitive direction, i.e. of all the possible directions

we could choose to move along from this base point a step

in the direction 0.9C~g + O.lC”~s will result in the largest

change in error function value. The eigenvalue corresponding

to each principal component direction is shown at the bottom

of each column. A step from the base point along a given

principal component direction will result in a change in

error function value that is proportional to the corresponding

eigenvalue. Therefore the eigenvalues can be considered to

be sensitivity coefficients which indicate the sensitivity of

the error function to moves along the principal component

directions. The principal component directions me arranged

in order from the most sensitive direction to least sensitive

direction left to right. Large sensitivity coefficients indicate

directions which are sensitive and small sensitivity coeffi-

cients indicate directions which are insensitive. The condition

number provides a measure of the spread of sensitivities

exhibited by the model and is defined as the ratio of the largest

eigenvalue to the smallest eignevalue, D;i /D3 ~. In practice a

value larger than 104 indicates ill-conditioning since truncation

and rounding errors begin to have an adverse effect on the

accuracy of the arithmetic involved. If the smallest eignevalue

is zero then the problem is singular. For this particular model

there are 13 principal component directions in total, one for

each parameter in the model. The condition number is 3.3 x 109

(i.e. 3x 104/9x 10-6) at the solution indicating that the model

is extremely ill-conditioned.

IV. MODEL VALIDATION

The analysis described above can be used to attribute

confidence to solutions which are obtained by standard circuit

optimization techniques. From the sensitivity analysis given

in Table I we can now estimate how reliable the component

values in the least squares solution are. The most sensitive

direction almost coincides with the direction of the gate to

drain capacitance (C’dg) with just a small component in the

direction of the drain to source capacitance (Cds ). Therefore

cdg will be precisely defined in the optimized solution since

it is a sensitive component and a very small change in its

value results in a large change in the error function value.

The other sensitive principal component directions-say for

example those with eigenvalues greater than 100, have large

components in the directions of the elements Cds, cg~, Ls and

Lg. Since the error function is sensitive to small changes

in these component values, these components will also be

precisely defined in the optimized solution. On the other hand

components such as gm, r, R and the parasitic resistances

Rs, Rd and Rg form the major components of the principal

component directions of low sensitivity—those with eigenval-

ues less than 1. These components are less accurately defined

since large changes in their values have a very small effect on
the error function value. Since the sensitivity coefficients vary

over such a wide range from 3 x 104 to 9 x 10–6 it is clear that

the equivalent circuit element values are resolved with widely

varying degrees of accuracy.
Since the eigenvalue corresponding to the least sensitive

direction is very small (i.e. 9 x 10-6) the model is practically

singular. The least sensitive direction does not coincide with

any one parameter direction but rather it is comprised of com-

ponents in several different parameter directions (Ri, Rg, R.

and g~ ). Therefore the condition number and consequently the

convergence of the numerical routines used and the accuracy

of the final solution will not be significantly improved by fixing

any one parameter during optimization. The condition number

will be improved if the least sensitive direction is fixed, a

technique which will be developed more fully later.

The equivalent circuit topology in Fig. 1 can be used

to model simultaneously via a physically based model the

response of the device at multiple bias points by deriving

values for the intrinsic equivalent circuit elements from the

applied bias voltages and ~technological device parameters,

such as the channel thickness and doping density [14]–[”16].

This approach has the advantage that it provides realistic

starting values for the optimization since the technological

device parameters are known within small manufacturing

tolerances. The optimizable parameters of this physics based

model are the technological device parameters together with

the extrinsic equivalent circuit components. The model is fitted

simultaneously to the measured dc drain current and the device

scattering parameters at each bias point. The values of the

parasitic resistances R, and Rd determine the bias voltages

across the intrinsic device, therefore they affect the optimum

intrinsic equivalent circuit component values [14], and so they

are more sensitive in the physics based model.

Table II shows a summary of results for a typical sensi-

tivity analysis performed on the physics based model using

measurements for the same Plessey F20 process 4 x 75 ,pm

device biased at V& = 5 V, Ids = 20y0, 50y0 and 100% l,iss.

The physics based equivalent circuit model has a condition

number of 2.35 x 106 (i.e. 9400/0.004) which is more tlhan

1000 times smaller than the condition number of the electrical

equivalent circuit model (3. 3 x 109). The smallest eigenvalue

of the physics based model is 0.004, much larger than the

smallest eigenvalue of the electrical equivalent circuit mc~del

(0.000009) which is on the threshold of singularity. Conse-

quently the most insensitive parameters in the physics based

model are more precisely defined than the most insensitive

parameters of the electrical equivalent circuit model. In other

words there is less uncertainty in the equivalent circuit com-

ponent values when they are obtained using the physics bamed

equivalent circuit model rather thaq the electrical equivalent

circuit model. With the physics based model there is still a

relatively wide range of eigenvalues-from 9400 to 0.004,

so the model parameters are again resolved with varying

degrees of accuracy. The most sensitive principal component

directions—those with eigenvalues greater than 100 are en-

tirely comprised of the technological device parameters; the

saturation velocity (V..t ), gate width (ZG ), doping den@

(N), gate length (LG), channel thickness (W), built in
potential (V~~ ) and the space-charge layer extension coefficient

(aO). These parameters will be defined with a high degree

of precision in the final solution. The model parameters with

large components in the least sensitive principal component

directions—those directions with eigenvalues less than 1, will

be less accurately defined. The source resistance R, forms the
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TABLE II

TYPICAL SENSITIVITY ANALYSIS PERFORMEDON THE PHYSICS BASED EQUIVALENT CIRCUIT MODEL [14]
FOR A PLESSEY F20 4 x 75pm DEVICE BIASSED AT t~, = 5.0 V, Id,, = 10%, 20’% and 50\9’o 1,),,

~
Rlncipal compenmt directions (eigenvectors) expressed as unit vectors in terms of tie optimizabk parameter dbwtkms

Vb (v) 0.743 -0.2 - -0.2 0.6 -0.6 - 0.1 - -0.1 -0.1 - - - - - - -0.3

V=, (ins-’) 78527 0.7 -0.1 -0.4 0.1 - 0.1 0.2 0.4 0.2 - - - -

W (pm) 0.106s 0.3 0.6 0.6 -0.1 - 0.1 0.2 - 0.1 -0.2 -0.2 - -0.2 - -

N (mq 3.17E23 0.4 0.1 0.3 0.2 - - -0.1 -0.4 - -0.3 0.3 0.3 - - 0.4 - -

La (pm] 0.5529 -0.3 -0.4 0.5 0.4 0.2 0.2 0.3 0.2 0.2 - -0.1 0.1 - - 0.1 - -

G (pm) 300.0 0.4 -0.6 0.3 - -0.2 -0.1 -0.2 -0.1 -0.3 - -, -0.2 - - -0.3 - -

% 1.099 -0.1 0.2 -0.4 0.3 -0.5 0.2 0.4 0.2 -0.3 0.1 - - - 0.2 - -

r., (0 342.64 - - - -0.2 - - 0.8 -0.5 -0.1 - - - - - -0.1 - -

r,, (Q/Vi 95.46 - - - 0.1 0.2 - 0.2 -0.3 -0.2 0.2 0.5 0.4 - -0.5 -0.2 -0.2

r. (fi/V7 3.S81 . . -0.1 -0.3 -0.1 -0.2 0.6 0.3 -0.3 0.4 0.2 -0.1 -0.2 - -0.1

Q (Q) 2.766 - - - - - - - - 0.3 0.2 0.7 -0.1 -0.3 -0.3 -0.2 -0.1 -0.2

L~ (nIf) 0.010 -0.1 - . - -0.1 - -0.1 0.4 -0.8 - -0.1 - -

F., (QI 1.764 0.1 -0.3 - - - - 0.2 0.3 0.1 0.1 - -D. 1 - 0,8

L, [nfi) 0.019 -0.1 0.5 0.2 0.2 - 0.6 0.2 0.2 -0.3

C,. (PF] 0.056 - - - -0.3 -0.5 0.7 - - 0.3 - - - - - 0.1 - -

L, (nH) 0.062 . . . -0.1 -0.2 - - 0.1 -0.3 0.4 - 0.1 . . - -

& (Q)

PzzSEl ‘m 4; l:W ‘2 ‘6 : : 3 ; ‘; O;O ‘;O ‘:4 ~~ ~~ ‘:’ ‘i

largest component of the least sensitive direction (the direction

with eigenvalue 0.004), but since R. is also a component of

directions with larger eigenvalues (82 and 56) it is defined with

reasonable accuracy in the final solution. On the other hand

the drain resistance Rd only comprises principal component

directions with eigenvalues smaller than unity.

The physics based equivalent circuit model provides a great

improvement over the electrical equivalent circuit model in

terms of model condition number. Nevertheless the model still

suffers, to a lesser extent, slow convergence and inaccurate

estimates for the most insensitive parameters as a result of

ill-conditioning. However, by automatically scaling the model

parameters using the information obtained by the principal

component sensitivity analysis this ill-conditioning can be

eliminated. In this way it is possible to obtain accurate

estimates for the insensitive model parameters such as R$, Rd

and Rg without recourse to direct measurement techniques.

The scaling procedure will now be discussed.

V. FULL AUTOMATIC SCALING

The analysis of the eigensystem of the Hessian matrix

employed in the sensitivity analysis provides a basis for

a transformation of the model space (Cgs, RZ, Cds etc.)

to a new set of uncorrelated variables vi (which are the

eigenvectors or principal component directions given by the

columns in Tables I and 11), This transformation is equivalent

to a rotation of the coordinate axes so that a unit change

in Vi has the effect of altering the model parameters by an

amount proportional to the ith eigenvector in Q (which is the

TABLE ILI
SENSITIVITY ANALYSIS AFTER FULL AUTOMATIC SCALING

‘~,m~,

Wm 0.743 1.0 0 0 ... 0

v3at 78527 0 1<0 0 0

w 0.1083 0 0 1.0 0

N 3.173323
. ..

0 0 0 0

- :~z “‘o ‘0 ‘0’ ““” :

ith column in Tables I and II). Such a change would effect

the error function value by an amount which is proportional

to the i th eigenvalue D,, (which is the sensitivity coefficient

in the ith column in Tables I and II). If the new variables

w are scaled in inverse proportion to the square root of their
corresponding eigenvalues D,i, Fig. 3, then a unit change in

any of the yi variables will have equal effect on the sum of

squares function for all i. A sensitivity analysis obtained for

this system is shown in Table 111, The error function is now

locally spherical, and the model condition number is 1. Since

the error function is now equally sensitive to moves in each

of the principal component directions the model parameters
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TABLE IV

OPTIMIZATION RESULTSFOR PLESSEY F20 4 x 75 ~m DEVICE

PleweyF204x75pm MESPET

Electrtcaf EquivalentCircuit Mcdel PhysicsBasedEqufvafentCircuit Model
(one bias poino (time bias f)OtIltS)

Scaling Techrdque No Scaling Sc.aifng to UnWy Full Automatic Scaling No Scaling Scaling tn Unity Fulf Automatic Scaling

Totaf Iterations 247 165 6 300’ 66 14

Ftrud RMS Error 0.00712 0.00709 0.00700 0.0455 0.0377 0.0377

Comment stating point Sh’ting point starting point non-unique physical solution
dependent

physical solution,
dependent

1
dependent

* OptlmisaUon did not converge before 300 iterations

(Cgs, Ri, Cds etc.) are all optimized with similar accuracy.

Furthermore, the spherically shaped error function provides

the fastest convergence rate possible. The transformation used

is

x = Q@i2g,—

where z is the new set of optimization variables, Q is

the matrix of eigenvectors of the Hessian, ~ is the ~ag-

onal matrix of eigenvalues and y is the matrix of model

parameters. Since Q and D are f~nctions of z the @ansfor-

mation must be recomputed periodically during optimization

to keep the condition number after scaling small as the

optimization variables are adjusted. Provided the model is

not ill-conditioned (after scaling) then the search direction

chosen by the Gauss–Newton optimization algorithm is not

dependent upon parameter scaling. Therefore the condition

number must only be kept less than about 104, the threshold

for ill-conditioning. Recomputation is needed more often if the

function is locally very nonlinear (this overhead is not great

for small-signal MESFET modelling) or if the starting values

are far from the solution.

VI. SUB- SPACE REDUCTION

When the condition number is excessively large, e.g. 109,

full automatic scaling involves computations with both very

large and small eigenvalues with consequent rounding and

truncation errors. As a result the accuracy of the final solution

and the convergence of the numerical routines used decreases.

This effect is particularly pronounced as the number of model

parameters increase. In order to improve the performance of

the numerical optimization of such models, the model cart

be partitioned on the basis of the distribution of eigenvalues

in Tables I and II, i.e. using the transformed model space.

Since the transformed variables are uncorrelated they can

be systematically divided into groups of similarly sensitive
variables. We call this technique sub-space reduction because

two or more sub-spaces are formed each with smaller condition

numbers than the original full-space problem. For example,

the equivalent circuit model giving the sensitivity analysis of

Table I could be divided into two sub-spaces bounded by the

sensitivity coefficients 3 x 104 – 0.1 and 0.06 —9 x 10–6 having

condition numbers of about 3 x 105 and 7 x 103 respectively.

Full automatic scaling of these sub-spaces will be perfomled

considerably more accurately than for the full-space model

with a condition number of 3 x 109. Using this technique e~ach

sub-space is optimized in turn until no further improvement

can be made.

VII. RESULTS

The full automatic scaling and sub-space reduction tech-

niques presented above have been compared with conventional

optimization techniques popularly used for small-signal MIES-

FET device modelling. The sum of squares of the errors

between the measured data and the model responses was

minimized using a Gauss–Newton algorithm. The modelling

procedure was performed with (i) full automatic parameter

scaling and sub-space reduction, (ii) no parameter scaling,

and (iii) parameter scaling to unity, Tables IV and V. Scaling

the parameters to unity by simply dividing each by their c~wn

value often improves convergence since it removes the effect

of different units. Models were extracted for several examples

of the Plessey F20 4 x 75 pm on-wafer MESFET and the NEC

NE71083 [21] packaged MESFET. Both devices are used in

1 and J bands and apart from the effect of the package they

provide similar performance. A packaged device was chosen

because the package adds complexity to the device model

making it more difficult to extract precise model parameters.

S-parameters of both MESFETS were measured at bias points

across their entire operating range, the packaged devices were

measured in a test fixture de-embedded using a Thru-Refllect-

Line calibration [22]. The on-wafer devices were measured

using Line-Reflect-Match calibration [23].

The on-wafer devices were modelled using the topology

given in Fig. 1. Adding transmission lines on the gate and

drain, and geometric capacitances between the gate, drain and

source was sufficient to simulate the package of the NE7 1083

device, Fig. 1. Both devices were characterized at a single bias

point using the electrical -equivalent circuit model, arid ;also

over multiple bias points using the physics based equivalent

circuit model. The optimizable parameters for the physics

based model are the extrinsic bias independent equivalent

circuit model components (including package components

for the NE7 1083) and the technological device parameters
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TABLE V

OPTIMIZATION RESULTSFOR NEC NE7 1083 DEVICE

NEC NE71083 MESFET

Eleetrteal Equlvalent Circuit Model Physics Based Equivafenf Ctreuit Model
(one bias potn~ (three bias pofnb)

❑‘

ScafIng Techntque No %alfng Scalfng to Unity Fufl Automatic scaling No Seaf@ ScafIng to Uni& Fuff Automatic Scafing

Totaf Iterations 300” 300” 16 300” 300” 46

Ftnsf RMS Error 0.03902 0.03854 0.03848 0.06080 0.04523 0.04608

Comment startfng point Stamng point Stamng point non-unique physical solution physical solution

dependent dependent dependent

● Opttmizatton dld not converge before 300 iterations

from which the intrinsic component values are derived. The

physics based equivalent circuit model preserves the inherent

correlations between model components and provides reliable

physically representative values for the equivalent circuit

elements [16].

Tables IV and V compare typical performance of the three

scaling techniques outlined above in extracting the parameters

of the device models. Modelling the on-wafer devices is

described first. The single bias point equivalent circuit model

provided the closest match to measured scattering parameters.

However, it did not provide reliable physically representative

component values and the final solution achieved proved to

be quite dependent upon the choice of starting values. All

three scaling techniques converged to similar solutions from

identical starting values, although sub-space reduction gave the

lowest rms error. Scaling the parameter values to unity enabled

the error to be reduced more quickly in the first few iterations

than with no parameter scaling, but in the following iterations

both methods converged extremely slowly. The sensitivity

analysis (Table I) shows that the model is almost singular,

which is the reason for the slow convergence. Initially the error

reduced quickly as the sensitive components were adjusted but

many iterations were subsequently used as changes made to

the values of the insensitive components had little effect on

the error function. Therefore, using full automatic scaling and

sub-space reduction the model space was optimized in two

sub-spaces giving a dramatic improvement in convergence:

With sub-space reduction (each sub-space scaled once) just 6

iterations in total were required to obtain the final solution, and

after 4 iterations the error was smaller than the final solutions
obtained by unity parameter scaling in 165 iterations (scaled

three times) and no parameter scaling in 247 iterations. The

largest variance between the solutions was seen in the values

of the least sensitive components, e.g. the parasitic resistances,

which were resolved more accurately by sub-space reduction

since the final rms error was lowest with this method.

A physical solution was obtained using the physics based

equivalent circuit model. With no parameter scaling the rate of

convergence was slow and the optimization was stopped with-

out converging after 300 iterations. A solution was obtained

using full automatic scaling (sub-space reduction was not used

since the condition number was sufficiently small—2 .35 x 106)

1

I I

Maasurarl \ k/\/

,2 .512 =r

A

Measurad

Modellad

fi 2,00
f2 18.0

-2

x 75 pm Device:
—— –0.8 V shown

the parameters

r -,5 01 -1-3

Fig. 4. S-Parameter Fhs for Sample Plessey F20 4

(l~s = 0.0,–0.8, –1.5 V L>. = 5.0 V (Only V,,
for S11, S12, S22).

in just 14 iterations compared to 66 when

were scaled to unity, Table IV. In both solutions the final

values of the technological parameters were similar but the

insensitive parameters such as the parasitic resistances had

more physically representative values in the solution obtained

using full automatic scaling. The drain currents simulated by

the physics based model—1 2 mA, 29 mA and 57 mA also

matched the measurements closely—1 2 mA, 30 mA and 56

mA respectively. Sample fits obtained for the F20 process

4 x 75 ~m device using full automatic scaling are shown in

Fig. 4 later in the article. S11, S22 and S12 are only shown
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TABLE VI
FINAL OFTIMJZED PARAMETER VALUES FORTHE PHYSICS BASED MODEL OF THE PLESSEY F20 4 x 75pm DEVICE

7

Physical Optimized Bias Independent Optimized
Parameters Vstue Parsmetem Vstue

V&l(v) 0.743 Rg (ohms) 2.786

Vsat (ins-’) 78527 Lg (M) 0.010,

W (m) 0.1083 Rs (ohms) 1.764

N (mq 3.17E23 Ls(x@ 0.019

IA (m) 0.5529 Cds (pFj 0.056

aO 1.066 IA(w) 0.082

ml 342.64 Rd (ohms) 2.634

m2 95.46

m3 3.881

TABLE VII
FINAL EQUIVWENT CIRCUIT ELEMENT VALUES DERIVED FROMTHE PHYSICS BASED MODEL i=ORTHE PLESSEY F20 4 x 75pm DEVICE

E 1ds=56d ~~~~

Vgs . O.ov Vga . -1.38V
Vds - 5.oV Vds = 5.OV

Ids . 12mA

C@ (pF) 0.4088 0.2787 0.2281

Cdg (pF) 0.0262 0.0289 0.0300

gm (mS) 43.859 32.484 27.477

r (pscc) 2.2817 1.6459 1.1906

RI (ohms) 1.6433 3.4463 8.8034

Lg (nIi) 0.0026 0.0036 0.CW42

Rds (ohms) 342.64 274.12 218.29

at one bias point since they are very similar over the range

of bias considered. The final optimized parameter values are

shown in Table VI and Table VII shows the corresponding

intrinsic equivalent circuit component values at the bias points

measured. The gate inductance Lg consists of an intrinsic bias

dependent part representing the phase delay in the gate and an

extrinsic bias independent part representing the inductance of

the gate contact. Comparison of the optimized technological

device parameters with the device specification indicates that

this solution is a good representation of the actual device

physics.

Modelling the packaged device was more difficult since

the equivalent circuit topology is considerably more complex

than it is for on-wafer devices. The electrical equivalent

circuit model uses 18 parameters aud has a condition num-

ber of the order 1011, and the physics based equivalent

circuit model uses 23 parameters with a condition number

also of the order 1011. Starting values were estimated for

the package components in the electrical equivalent circuit

model by trial and error. But, since the technological pa-

rameters were known within small tolerances they could

be fixed while the package components were optimized to

provide a reasonable starting approximation for the package in

the physics based equivalent circuit model. The optimization

converged very slowly for both the electrical and physics based

equivalent circuit models when no parameter scaling and unity

parameter scaling were used, not finding a solution in less

than 300 iterations. Using full automatic scaling in two sub-

spaces solutions were found for the electrical and physics

based equivalent circuit models in 16 and 46 iterations re-

spectively. Once more the electrical equivalent circuit model

gave the closest fit to the measured data but the more con-

strained physics based model gave more physically repre-

sentative component values. The largest variance between

models was seen in the values of the insensitive components,

i.e. the package and parasitic components. Fig. 5 (on the

next page) shows fits obtained for an NE7 1083 device using

the physics based equivalent circuit model. By fitting this

model at a larger number of bias points the sensitivity of

some model parameters can be improved (thus improving the

model uniqueness), this is particularly true for the package

and parasitic components.
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2 .512 =r

r -5 01 -1-3-2

Fig. 5. S-Parameter Fits for Sample NECNE71083 Device: (Vg~ = 0.0,

–0.4, –0.8V; Vd, =5.0 V(Only Vg, =–0.4Vshown for Sll, S12, S22).

VIII. CONCLUSIONS

The degree of ill-conditioning in the small signal MESFET

equivalent circuit model has been formally quantified using

a systematically formulated sensitivity analysis procedure.

The condition number is typically very large since the error

function most often used is sensitive to changes in some

combinations of model parameters but extremely insensitive

to changes in other combinations. Consequently there is a

good deal of uncertainty associated with the optimized values

of the insensitive components, and the convergence of the

optimization is slow. Using the principal components sensi-

tivity analysis we have been able to estimate for the first time

how reliable the optimized component values are in the final

solution.
A new optimization technique has been presented which

eliminates ill-conditioning thus ensuring rapid convergence

and accurate solutions. By performing a coordinate transfor-

mation of the model variables to the principal component axes

which are uncorrelated, the new principal component variables

can be automatically scaled providing uniform sensitivity for

all variables, i.e. a condition number of unity. For extremely

ill-conditioned models numerical rounding and truncation er-

rors reduce the effectiveness of this scaling technique. Such

models can be systematically partitioned into smaller sub-

spaces of the transformed model space on the basis of the

sensitivities of the uncorrelated principal component variables.

Separate optimization of sensitive and insensitive sub-spaces

provides a marked improvement in convergence and a reduc-

tion in the uncertainty associated with the values of insensitive

model components such as the parasitic resistances.

If the values of the intrinsic equivalent circuit components

are derived from optimizable technological device parameters

over multiple bias points the condition number is significantly

improved. Consequently the convergence of the numerical

routines used is also improved and the solution is resolved

with more precision. Since the intrinsic components of the

equivalent circuit model are now constrained to obey the

device physics the model is unable to fit the measured data

so closely. It does, however, preserve the inherent correlation

between the model components and provides more physically

representative values for the equivalent circuit elements than

could otherwise be achieved.

Unique and physically representative small signal models

have been determined for a Plessey 4 x 75pm MESFET

and an NEC NE7 1083 packaged MESFET using the new

optimization strategy. For both devices the convergence of the

new optimization technique was significantly faster than con-

ventional techniques. In addition insensitive parameters such

as the parasitic resistances were determined more uniquely

since the sensitivity of the error function to these parameters

was enhanced by automatic scaling. These observations are

particularly pertinent to the packaged NE7 1083 device since

the model is more complex and more ill-conditioned than the

on-wafer device model. Consequently it is very difficult to

obtain a physically representative solution for the packaged

device model using conventional optimization strategies.

ACKNOWLEDGMENT

Dr. D. M. Brookbanks for his helpful discussions and GEC

Marconi Materials Technology Ltd for providing RF on-wafer

chip devices.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

REFERENCES

J. W. Bandler and S. H. Chen, “Circuit optimization: The state of the
art:’ IEEE Trans. Microwave Theory Tech,, vol. 36. pp. 424-444, Feb.
1988.
G. Dambrine, A. Cappy, F. Heliodore, and E. Playez, “A new method
for determining the FET small-signal equivalent circuit,” IEEE Trans.

Microwave Theory Tech,, vol. 36, pp. 1151–1 159, July 1988.
J. W. Bandler, S. H. Chen, and S. Daijavad, “Microwave device
modelling using efficient L1 optimization: A novel approach,” IEEE
Trans. Microwave Theory Tech., vol. MTT-34, pp. 1282–1 293, Dec.
1986.
J. W. Bandler, S. H. Chen, S. Ye, and Q. J. Zhang, “Robust model
parameter extraction using large scale optimization techniques.” IEEE
MTFS Int. Mzcrowave Symp. Dig., pp. 3 19–322, New York, 1988.
W’. R. Curdce and R. L. Camka, “Self-consistent GaAs FET models
for amplifier design and device diagnostics,” IEEE Trans. Microwave

Theory Tech., vol. MTT-32, pp. 1573–1578, Dec. 1984.
R. L. Vaitkus, “Uncertainty in the values of GaAs MESFET equivalent
circuit elements extracted from measured two-port S-Parameters,” IEEE
Cornell Conf, on High Speed Semiconductor Dev. and Ccts., Cornell
Univ., Ithaca, NY, Aug. 1983.
G. L, Bilbro, M. B. Steer, R. J. Trew, C. R. Chang, and S. G. Skaggs,

“Extraction of the parameters of equivalent circuits of microwave
transistors using tree annealing,” IEEE Trans. Microwave Theory Tech.,
vol. 38, pp. 1711–1718, NOV. 1990.
T. Chen and M. Kumar, “Novel GaAs FET modelling tectrnique for
MMICS,” GaAs Symp. Tech. Dig., pp. 49–5’2, Nashville, TN, Nov. 1988.
H. Kondoh, “An accurate FET modelling from measured S-parameters,”
IEEE MITS Int. Microwave Symp Dig., pp. 377–380, June 1986.



PATTERSON etal.: SYSTEMATIC OPTIMIZATION STRATEGY FOR MICROWAVE DEVICE MODELLING 4105

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

A. D. Patterson, V. F. Fusco, J. J. McKeown, and J. A. C. Stewurt,

“Problems associated with small-signal MESFET equivalent circuit
model parameter estimation,” 14th A.R.M.M.S. Conf. Dig., Queen’s

University Belfast, Mar. 1991.
“Active microwave device modelling: A transfer function ap-

=h SERC Contract Report GR/F33605.
“HP851O Specification,” HP851OB Network Analyzer System Manual,

Hewlett Pack~d Company, Santa Rosa, CA, 1987.
P. A. Linden, Ph.D. dissertation, Department of Electrical and Electronic

Engineering, The Queen’s University of Belfast, Northern Ireland, 1991.
P. H. Ladbrooke, MMIC Design: GaAs FETs and HEMTs. Norwood,

Vkcent F. Fusco was educated at the Queen’s

University of Belfast where he obtained the degree
of Ph.D.

He has worked as a research engineer on short
range radar and radio telemetry systems. Currently
he is a reader in Microwave Communications in the

School of Electrical Engineering and Computer Sci-
ence, The Queen’s University of Belfast. His current

research interests include nonlinear microwave cir-

cuit simulation and concurrent programming tech-

niques for electromagnetic field problems. He has
MA: Artech House, 1989, pp. 91-203.
S. M. Sze, Physics of Semiconductor Devices. New York Wiley, 1981.

acted as consultant to a number of major ~ompanies id has published

J. W. Bundler, R. M. Biernacki, S. H. Chen, J. Song, S. Ye, and Q.
numerous research papers in these areas. He is author of the book Microwave

J. Zhang, “Statistical modelling of GUAS MESFETS,” 2EEE MTT-S Int.
Circuits, Analysis and Computer Aided Design, Prentice Hall, 1987.

Microwave Symp. Dig., pp. 87–90, Boston, June 1991.
Dr. Fusco is a Chartered Electrical Engineer and a Member of the Institnte

A. D. Patterson, V. F. Fusco, J. J. McKeown, and J. A. C. Stewart, “Mi-
of Electrical Engineers.

crowave device modelling using systematic optimization techniques,”
IEE Colloquium on Computer Based Tools for Microwave Engineers

Dig., Oct. ‘1991.
J. J. McKeown, ‘<Sensitivity analysis with respect to independent vari-
ables,” in Nonlinear Optimization - Theory and Algorithms, L, C. W.

J. J. McKeown, photograph and biography not available at the time of

Dixon, E. Spedicato, G. P. Szego, Birkhatrser, 1980.
publication.

J. J. McKeown, D. Meegan, D. Sprevuk, An Introduction to Uncon-
strained Optimisation. Cambridge: Adam Hilger, ESM, 1990.
The GaAs Handbook, 2nd cd., Towcester, Northamptonshire, UK:

Plessey Three-Five Group Limited, 1989.
NEC Microwave and RF Semiconductors, NEC Electronics (Europe)
GmbH, Microwave Dept., Dusseldorf, W. Germrmy, 1990.
G. F. Engen, rmd C. A. Hoer, “Thrn-reflect-lin6 an improved technique
for calibrating the dual six-port automatic network urmlyzer,” IEEE
Trans. Microwave Theory Tech., vol. MTT-27, pp. 987–993, December

1979.
S. Lautzenhiser, A. Davidson, and K. Jones, “Improve accuracy of on-
wafer tests via L.R.M. calibration,” Microwaves and R.F., pp. 105–109,

Jan. 1990.

J. A. C. Stewart was born in Belfast, Northern

Ireland in March, 1937. He received the B. SC.
degree in physics in 1959 and the Ph.D. degree in
1962, both from The Queen’s University of Belfa~st.

After working in Shorts, Belfast as a Design
Engineer and Queen’s University, Kingston, Ch-

tario, as a Post Doctoral Fellow, he joined the

Department of Electrical and Electronic Engineering
at The Queen’s University of Belfast, where he is

now Professor of Electrical Communications. His
research interests include CAD and simulation of

active microwave devices and their current interactions.

Andrew Patterson was born in Northern Ireland
in 1967. He received the B.Eng. degree in electrical

amd electronic engineering from the Queen’s Uni-
versity of Belfast in 1988. In 1992 he completed
studies for the degree of Ph.D. in microwave active
active device modelling at Queen’s LJniversity.

He is presently working at EEsof Inc., Westlake,

CA.


