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A Systematic Optimization Strategy
For Microwave Device Modelling

Andrew D. Patterson, Vincent F. Fusco, J. J. McKeown, and J. A. C. Stewart

Abstract—Small signal GaAs MESFET equivalent circuit mod-
els are typically very ill-conditioned since the error function
most often used is sensitive to some combinations of the model
components and extremely insensitive to other combinations.
Consequently the convergence of the parameter estimation rou-
tines used is slow and there is a good deal of uncertainty
associated with the optimized values of the insensitive compo-
nents. In this work the degree of ill-conditioning in the equivalent
circuit model is formally quantified using a systematically formu-
lated principal components sensitivity analysis procedure. Using
this procedure it is possible to estimate for the first time how
reliable the component values are in the optimized model. On this
basis the extraction of the MESFET equivalent circuit model is
compared using electrical model components and physical model
parameters. In addition a new optimization strategy is presented
which improves the condition number of the model so that rapid
convergence and accurate models are ensured. This technique
transforms the axes of the model from the equivalent circuit
components which are correlated to the uncorrelated principal
component axes which can be systematically scaled to eliminate
ill-conditioning. Using this technique it is possible to obtain
accurate estimates of the insensitive model parameters such as
the parasitic resistances without resorting to direct measurement
techniques.

1. INTRODUCTION

HE SMALL-SIGNAL performance of MESFET devices

at microwave frequencies is most often characterized by
an equivalent circuit model, e.g. Fig. 1. This representation is
convenient for incorporation into circuit simulation programs
and can provide valuable insight into the operation of the de-
vice in a circuit environment. However, the equivalent circuit
can only be used to validate actual device phenomenological
behavior if physically representative component values can be
defined for individual devices.

The component values of the equivalent circuit model can
be extracted by various methods [1]-[6]. Usually the model
is obtained by optimizing the component values to give the
smallest sum of squares of errors between the model responses
and the small-signal S-parameters measured for the device.
However, typically there are several solutions that provide
close fits to the measured data and the final solution obtained is
dependent upon the initial values assigned to the components.
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Fig. 1. MESFET device model (dashed line indicates package device
elements).

There are two mechanisms by which multiple solutions
originate. The first mechanism arises because the error function
encompasses several distinct local minima. The optimization
terminates at the closest local minimum which is not neces-
sarily the absolute or global minimum [7], thus a sub-optimal
solution may be obtained. The second mechanism arises due
to the characteristic shape of the error function and the limited
numerical resolution of the extraction technique. In this work
we will show that in the area surrounding a minimum the error
function most often used is so flat, i.e. featureless, with respect
to several of the equivalent circuit elements that a large range
of solutions will give equally close fits. In other words the
error function suffers extremely poor sensitivity to changes
in the values of some circuit elements, consequently there is
uncertainty about the most physically realistic values for these
elements. Fig. 2 shows the actual shape of the error function
with respect to some of the components in the equivalent
circuit model of Fig. 1 (using the component values given
later in Table I). For example, in [6] it was found that the
gate lead inductance Lg in a 10 element device model could
typically vary more than 50% and still provide a satisfactory
fit. In the work reported here more complex models have been
used than those in [6] (from 13 up to 23 element models). This
exacerbates the problem since the error function is particularly
insensitive to some of the extra elements. The classical model

. topologies currently in use also exhibit a uniqueness problem

[8]-[11]. The most significant example of this problem is
the electrical similarity of the resistances R: and Rg. This
has the effect that the sum of the two components can be
determined but it is difficult to determine unique individual
values [11].

Uncertainty is also introduced into the equivalent circuit
component values by other phenomenon: Some uncertainty is
caused by small errors generated by the process of measur-
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Fig. 2. Shape of error function F'(z) in the area of a minimum.

ing and de-embedding the device scattering parameters [12].
Another source of uncertainty is the simplistic equivalent
circuit topology used to represent actual devices. Reducing
the number of components in the model topology forces the
remaining components to take on less physically realistic
values in order to accommodate the missing components.
Also since insensitivity of the error function is responsible for
uncertainty in the component values, making the model more
complex by adding extra components (which are essentially
less sensitive fine tuning components) increases the degree
of uncertainty. The aim therefore is to create a model which
is sufficiently complex to represent the important physical
processes taking place in the device and yet simple enough
to allow fast and accurate extraction of the component values.

Since the local minima originating by the first mechanism
above are separate from each other it is possible to select
the global minimum, provided an exhaustive search of local
minima can be achieved [13]. In more complex models,
for some components, there is a wide range of values in
the area of the solution which provide equally good fits to
the measured data. Primarily this occurs because the error
function most often used suffers extremely poor sensitivity
to several of the equivalent circuit model components. The
uncertainty associated with this low component sensitivity
is more difficult to reduce than the uncertainty arising from
the multiple solutions produced by the local minima effects
mentioned above. If we can determine starting values that
lie within the area of attraction of the global minimum, then
global optimization is not required. Such starting values can
be determined using a physics based equivalent circuit model
[14]-{16] in which the intrinsic component values are derived
from the technological device parameters. Since the sensitivity
characteristics of this type of model are more uniform the
uncertainty in component values arising from the second
mechanism above is also reduced.

The poor sensitivity of the error function to some model
parameters and the uniqueness problem associated with the
model topology both give rise to ill-conditioning. This in turn
causes inaccurate parameter estimates and slow convergence
when finite precision numerical optimization is employed.
Ill-conditioning in the device model is indicated by a large

Fig. 3. Contours of error function value F(x) with sensitivity directions.

condition number which is the ratio of the sensitivities of the
error function to changes in the directions comprising the most
and least sensitive combinations of parameters. Contours of
constant error function value are shown for an arbitrary ill-
conditioned least squares problem having 2 parameters z; and
x29, Fig. 3. For this problem the most sensitive direction is OB
since the highest rate of change is along this direction, i.e. the
contours are closest together along this direction. Conversely
OA is the least sensitive direction. For typical MESFET model
topologies such as that in Fig. 1 it will be shown that the axis
of the least sensitive direction is about 100000 times longer
than the axis of the most sensitive direction. In other words the
contours lie virtually parallel to the least sensitive direction.
Since a relatively large move along the least sensitive direction
results in a very small change in error function value the
optimized solution will not be accurately defined along this
direction. The least sensitive direction may coincide with a
single parameter direction or it may be a combination of two
or more parameter directions. For the model considered in [6]
large variations in Lg had a small effect on the error function
therefore Lg itself was a direction of low sensitivity. Since
the effect upon the error function of an increase in Ri can
be nullified by a decrease of similar magnitude in Rg the
direction given by the vector Ri — Rg is also a direction of
low sensitivity.

Various heuristic techniques have been proposed for en-
hancing the convergence and accuracy of MESFET models
obtained by parameter extraction [8]-[9], but these are im-
plemented in an ad hoc fashion and do not resolve the
underlying problem of ill-conditioning. This paper demon-
strates how the degree of ill-conditioning in a given model
can be formally quantified using a systematically formulated
sensitivity analysis procedure. This analysis technique is used
as a model validation tool and also to establish confidence
in solutions obtained by numerical optimization. In addition,
a new optimization strategy is presented which improves the
condition number of the problem so that rapid convergence
and accurate solutions are ensured.
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II. MODEL PARTITIONING

Model partitioning is an established technique for improving
the performance of optimization of ill-conditioned models with
a large number of parameters. It has been shown that the
convergence of the numerical routines used and the accuracy
of the final solution obtained may be improved by partitioning
the model parameters into groups and optimizing each group
separately. If the grouping is performed so that parameters with
similar sensitivity are placed together then the condition num-
ber at each optimization step may be improved significantly.
For example, Kondoh [9] used an empirically derived program
of optimization steps in order to provide improved uniqueness
in the solutions obtained. Once the last step is completed
the procedure is repeated until a sufficiently accurate solution
is achieved. This method can be improved upon by using a
sensitivity analysis of the error function rather than the model
responses as a basis for grouping the parameters [11], [17]. The
improved method discussed here is not fixed like Kondoh’s
method but rather it is based upon an analysis of the shape of
the error function using the current model and measurement
data. In addition it provides better convergence especiaily
when bias dependence and statistical modelling are important.

Since the model parameters are correlated they can only
be grouped or partitioned in an ad hoc fashion, this can lead
to slow convergence; also there is no obviously intuitive way
to improve convergence by scaling the parameters. However,
these problems can be circumvented if more information about
the shape of the error function and correlation of the model
parameters can be obtained. This can be achieved using the
principal components sensitivity analysis which is described
next and which forms the formal underpinning for the work
reported here.

III. PRINCIPAL COMPONENTS SENSITIVITY ANALYSIS

A sensitivity analysis of the error function, F(z), to vari-
ations only along the directions of the model parameter axes
gives an inadequate description of the model sensitivity char-
acteristics. This is so because the parameters are correlated
and the effect of combinations of parameters may be more
important than the effect of individual parameters. This is
illustrated by the least squares problem in Fig. 3 having
parameters z; and x2. For this problem the parameters z; and
xo are equally sensitive since the contours of constant F'(z) are
equally spaced along these two directions. However, the error
function is particularly insensitive to changes in the direction
OA and sensitive to changes in the direction OB. The problem
is therefore ill-conditioned, even though the optimizable model
parameters are equally sensitive. An optimized solution will
be precisely defined along the OB direction, but much less
precisely defined along the OA direction. Therefore because
there is some ambiguity in the value of OA there will also be
some ambiguity in the optimized values of both z; and x3.
The most relevant sensitivity directions are therefore different
from the parameter directions x; and x2, they are in fact the
OA and OB directions. These sensitivity directions are called
the principal components. A sensitivity analysis which defines
the principal components is now summarized [18]-{19].

The sum of squares function F(z) can be written as
Fla) = fie) + f2e) + -
+ fr (@) Zfz z).

A second-order analysis is employed because a first-order
analysis has no meaning since, by definition, the function is
stationary at a local minimum. The second order variation in
F(z) can be expressed in the neighborhood of a solution,
which we call z*, as the Taylor series

F(z* + 6z*) =~ F(z*) + 62’ VF(z*)
+ %6gr_tV2F(§*)5a:.

The linear term in éz' is small in the neighborhood of
a solution, and it is zero if z* is an exact solution. The
principal components sensitivity analysis is an analysis of the
eigensystem of the Hessian matrix V2F(z*). Therefore we
need to calculate the hessian matrix for the particular case of
a least squares function. If we define the vector f,

i: [fl : fm]t
then we can write,

oF

811
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where J is the matrix with components J,, = 9f,/0z; called
the Jacobian matrix of F(z). Differentiating again:
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and so on for the other elements of the hessian matrix. By
separating into groups of first derivative terms and groups of
second derivative terms, we can write the hessian matrix G
as follows:

G =2

=1

where G is the hessian matrix of the function f;.
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TABLE I
SENSITIVITY ANALYSIS PERFORMED ON THE SMALL-SIGNAL MESFET EQUIVALENT CIRCUIT
MOobEL OF FIG . 1 FOR A PLESSEY F20 4 X 75 ym DEVICE; Vg, = 5V, Igs = 20% I 455

Optimizable Final Principal components directions (eigenvectors) expressed as unit vectors in terms of optimizable parameter directions
Parameter Value
C, (pF) 0.226 - 0.1 0.7 -0.6 -0.3 - 0.1 - - - -

R, (2} 8.803 - - 0.1 0.1 04 04 0.8

R, (Q) 2.786 - 0.2 -0.1 0.9 -0.2 -0.2 -0.4
L; (nH) 0.013 - - 0.1 -0.3 0.9 -0.2 - - - - -

R, (Q) 1.764 - - - - - 0.4 0.6 - 0.5 0.2 -0.3
L, (nH) 0.019 - 0.7 0.7 0.2 - - - -
Cy, (pF) 0.058 0.1 0.9 -0.1 - - - - -
Cy (pF) 0.030 0.9 -0.1 0.1 0.1 - - - .
Ry, () 218.290 - - - 0.1 0.1 0.6 - - - - - -
Gy, (mS) 27.477 -0.4 -0.6 0.1 0.6 0.2 -0.3
L, (nH) 0.082 0.2 -0.6 08 -

R, (Q) 2.534 - - - - 0.1 -0.3 0.9 -

t{ps) 1.191 08 -0.6 -0.2 - - -
Sensitivity coefficient 3E4 2E3 1E3 500 150 32 12 0.1 0.06 0.02 7E-3 2E-4 9E-6

(efgenvalue)

The Gauss-Newton algorithm uses the assumption that the
second term in this expression is negligible in comparison
to the first, i.e. the hessian is replaced by 2.J'.J. Since the
absolute value of f; is expected to be small in the vicinity of
the minimum of F(z) this is usually a good approximation
for small-signal MESFET modelling. Consequently we also
approximate the hessian matrix by 2J¢J for the principal
component sensitivity analysis, although the complete hessian
can also be used. Evaluation of the eigensystem of the hes-
sian matrix V2F(z*) yields a considerable amount of useful
information. When the hessian matrix is replaced by 2.J%.J the
eigenvalues are non-negative since the J*J is at worst positive
semi-definite. The hessian can be written as follows:

ViF(") = QDQ'

where @) is the orthonormal matrix of eigenvectors, and D is
a diagonal matrix with D,, the ith eigenvalue of V2F(z*).
Therefore, writing y = Qt(@, we have

Fy) = F* + y'Q'VF* + 1y'Dy.

The contours of F(y) describe a family of ellipsoids whose
axis lengths are invgrsely proportional to \/D,,, and whose
axes lie along the y, axes, Fig. 3. The eigenvectors of
V2F(z*), i.e. the columns of the matrix Q, are unit vectors
which define the y, axes. These eigenvectors i.c. the y; axes
are the principal component directions. The eigenvector or
principal component corresponding to the direction of max-
imum eigenvalue D,; is the direction of maximum sensitivity
to changes in the value of z*. Conversely the principal com-
ponent corresponding to the direction of minimum eigenvalue
D,, is the direction of minimum sensitivity to changes in
the value of z*. Information concerning these two principal
component directions is most useful since they describe the

extremes of the model sensitivity characteristics. The number
of principal components is the same as the number of model
parameters. In Fig. 3, since y; is the direction of maximum
sensitivity, the position of the minimum of F(z) is likely to
be more accurately determined along y; than along y, which is
the direction of minimum sensitivity. When D,, is very small
compared to I);; then the contours become nearly parallel to
the y, axis. In this case the solution may be satisfied by a large
number of solutions parallel to the ¥, axis and the problem is
said to be ill-conditioned.

This type of analysis has the effect of completely eliminat-
ing the correlation between the model parameters. The first
principal component is the linear combination of parameters
for which the variance is maximum. The second principal
component also obeys this condition, subject to the overriding
condition that it is uncorrelated with the first, and so on for
the remaining principal components. The fact that the principal
components are uncorrelated will be an important factor when
the scaling of model parameters is considered later.

Table I shows a summary of results for a typical principal
components sensitivity analysis for the device topology given
in Fig. 1 using measurements from a Plessey F20 process
4 x 75 pm device [20] biased at Vg, = 5 V, Iz, = 20% ..
The optimizable parameters and their final values are shown in
the first two columns to the left. The remaining columns give
the principal component directions (eigenvectors) expressed as
unit vectors in terms of the model parameters. For example, the
first principal component is the unit vector with components
0.9 in the direction of the gate to drain capacitance (Cy,)
and 0.1 in the direction of the drain to source capacitance
(Cus), ie. 0.9C44 + 0.1Cy,. The components of this prin-
cipal component direction along the other model parameter
directions are much smaller and have been omitted for the
purpose of presentation. This first principal component is the
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most sensitive direction, i.e. of all the possible directions
we could choose to move along from this base point a step
in the direction 0.9Cy, + 0.1Cy; will result in the largest
change in error function value. The eigenvalue corresponding
to each principal component direction is shown at the bottom
of each column. A step from the base point along a given
principal component direction will result in a change in
error function value that is proportional to the corresponding
eigenvalue. Therefore the eigenvalues can be considered to
be sensitivity coefficients which indicate the sensitivity of
the error function to moves along the principal component
directions. The principal component directions are arranged
in order from the most sensitive direction to least sensitive
direction left to right. Large sensitivity coefficients indicate
directions which are sensitive and small sensitivity coeffi-
cients indicate directions which are insensitive. The condition
number provides a measure of the spread of sensitivities
exhibited by the model and is defined as the ratio of the largest
eigenvalue to the smallest eignevalue, D;;/D,;. In practice a
value larger than 10* indicates ill-conditioning since truncation
and rounding errors begin to have an adverse effect on the
accuracy of the arithmetic involved. If the smallest eignevalue
is zero then the problem is singular. For this particular model
there are 13 principal component directions in total, one for
each parameter in the model. The condition number is 3.3 x 10°
(ie. 3x10%/9x 107°) at the solution indicating that the model
is extremely ill-conditioned.

IV. MODEL VALIDATION

The analysis described above can be used to attribute
confidence to solutions which are obtained by standard circuit
optimization techniques. From the sensitivity analysis given
in Table T we can now estimate how reliable the component
values in the least squares solution are. The most sensitive
direction almost coincides with the direction of the gate to
drain capacitance (Cy,) with just a small component in the
direction of the drain to source capacitance (Cys). Therefore
Cyg will be precisely defined in the optimized solution since
it is a sensitive component and a very small change in its
value results in a large change in the error function value.
The other sensitive principal component directions—say for
example those with eigenvalues greater than 100, have large
components in the directions of the elements Cg,, Cys, L5 and
Lg. Since the error function is sensitive to small changes
in these component values, these components will also be
precisely defined in the optimized solution. On the other hand
components such as gm, 7, R; and the parasitic resistances
Rs, R4 and R, form the major components of the principal
component directions of low sensitivity—those with eigenval-
ues less than 1. These components are less accurately defined
since large changes in their values have a very small effect on
the error function value. Since the sensitivity coefficients vary
over such a wide range from 3 x 10% to 9 x 1079 it is clear that
the equivalent circuit element values are resolved with widely
varying degrees of accuracy.

Since the eigenvalue corresponding to the least sensitive
direction is very small (i.e. 9 x 107°) the model is practically

singular. The least sensitive direction does not coincide with
any one parameter direction but rather it is comprised of com-
ponents in several different parameter directions (R;, Ry, R,
and ¢y, ). Therefore the condition number and consequently the
convergence of the numerical routines used and the accuracy
of the final solution will not be significantly improved by fixing
any one parameter during optimization. The condition number
will be improved if the least sensitive direction is fixed, a
technique which will be developed more fully later.

The equivalent circuit topology in Fig. 1 can be used
to model simultaneously via a physically based model the
response of the device at multiple bias points by deriving
values for the intrinsic equivalent circuit elements from the
applied bias voltages and-technological device parameters,
such as the channel thickness and doping density [14]-[16].
This approach has the advantage that it provides realistic
starting values for the optimization since the technological
device parameters are known within small manufacturing
tolerances. The optimizable parameters of this physics based
model are the technological device parameters together with
the extrinsic equivalent circuit components. The model is fitted
simultaneously to the measured dc drain current and the device
scattering parameters at each bias point. The values of the
parasitic resistances R; and Il; determine the bias voltages
across the intrinsic device, therefore they affect the optimum
intrinsic equivalent circuit component values [14], and so they
are more sensitive in the physics based model.

Table II shows a summary of results for a typical sensi-
tivity analysis performed on the physics based model using
measurements for the same Plessey F20 process 4 X 75 pm
device biased at Vy, = 5V, Iz, = 20%,50% and 100% Iss.
The physics based equivalent circuit model has a condition
number of 2.35 x 10 (i.e. 9400/0.004) which is more than
1000 times smaller than the condition number of the electrical
equivalent circuit model (3.3 x 10%). The smallest eigenvalue
of the physics based model is 0.004, much larger than the
smallest eigenvalue of the electrical equivalent circuit model
(0.000009) which is on the threshold of singularity. Conse-
quently the most insensitive parameters in the physics based
model are more precisely defined than the most insensitive
parameters of the electrical equivalent circuit model. In other
words there is less uncertainty in the equivalent circuit com-
ponent values when they are obtained using the physics based
equivalent circuit model rather than the electrical equivalent
circuit model. With the physics based model there is still a
relatively wide range of eigenvalues—from 9400 to 0.004,
so the model parameters are again resolved with varying
degrees of accuracy. The most sensitive principal component
directions—those with eigenvalues greater than 100 are en-
tirely comprised of the technological device parameters; the
saturation velocity (Viqt), gate width (Z¢), doping density
(N), gate length (Lg), channel thickness (W), built in
potential (V;,) and the space-charge layer extension coefficient
(a,). These parameters will be defined with a high degree
of precision in the final solution. The model parameters with
large components in the least sensitive principal component
directions—those directions with eigenvalues less than 1, will
be less accurately defined. The source resistance R, forms the
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TABLE 1I
TYPICAL SENSITIVITY ANALYSIS PERFORMED ON THE PHYSICS BASED EQUIVALENT CIRCUIT MODEL [14]
FOR A PLESSEY F20 4 x 75 um DEVICE BiasseED AT Vy, = 5.0 V, I, = 10%,20% and 50\% I,

Optimizable Final Principal component directions (eigenvectors) expressed as unit vectors in terms of the optimizable parameter directions
Parameter Value
Voo V) 0.743 -0.2 - -0.2 0.6 -0.6 - 0.1 - -0.1 -0.1 - - - - - - -0.3
Vo (ms™) 78527 0.7 -0.1 -0.4 0.1 - 0.1 0.2 0.4 0.2 - - - - - - - -
W (pam) 0.1083 0.3 0.6 0.6 - -0.1 - 0.1 0.2 - 0.1 -0.2 -0.2 - - -0.2 - -
N (m™® 3.17E23 04 0.1 03 0.2 - - -0.1 -0.4 - -0.3 0.3 03 - - 04 - -
Lg (pm) 0.5529 -0.3 | -0.4 0.5 0.4 0.2 0.2 0.3 0.2 0.2 - -0.1 0.1 - - 0.1 - -
Zg (pm) 300.0 0.4 -0.6 0.3 - -0.2 -0.1 -0.2 -0.1 -0.3 - - -0.2 - - -0.3 - -
a, 1.099 - -0.1 0.2 -0.4 0.3 -0.5 0.2 0.4 0.2 -0.3 0.1 - - - 0.2 - -
To () 342.64 - - - 0.2 - - 08 | 05 | -01 - - - - - 0.1 - -
T (Q/V) 95.46 - - - - 0.1 0.2 - 0.2 -0.3 0.2 0.2 0.5 0.4 - -0.5 0.2 | 02
T3 (Q/VH 3.881 - - - - -0.1 -0.3 -0.1 -0.2 0.6 0.3 -0.3 0.4 0.2 -0.1 -0.2 - -0.1
R, () 2.786 - - - - - - - - 0.3 0.2 0.7 -0.1 -0.3 -0.3 -0.2 -0.1 -0.2
L, (nH) 0.010 - - - -0.1 - - -0.1 - -0.1 0.4 -0.8 - -0.1 - -
R, (Q) 1.764 - - - 0.1 -0.3 - - - - 0.2 0.3 0.1 0.1 - -0.1 - 0.8
L, (nH) 0.019 - - - - - - - -0.1 0.5 0.2 0.2 - 0.6 0.2 0.2 -0.3
Cye (pF) 0.058 - - - 03 | -05 | o7 - - 0.3 - - - - - 0.1 - -
L; (nH) 0.082 - - - -0.1 -0.2 - - 0.1 -0.3 04 - 0.1 0.1 -0.6 0.4 - -
R, (Q) 2.534 - - - - - - - - - -0.1 - 0.1 - 0.3 -0.1 0.9 -
Sensitivity coeffictent 9400 | 4600 | 1450 82 56 8 5 3 1 0.6 0.40 0.20 0.14 0.10 0.04 0.01 | 0.004
(eigenvalue)
largest component of the least sensitive direction (the direction TABLE III

with eigenvalue 0.004), but since R, is also a component of
directions with larger eigenvalues (82 and 56) it is defined with
reasonable accuracy in the final solution. On the other hand
the drain resistance Ry only comprises principal component
directions with eigenvalues smaller than unity.

The physics based equivalent circuit model provides a great
improvement over the electrical equivalent circuit model in
terms of model condition number. Nevertheless the model still
suffers, to a lesser extent, slow convergence and inaccurate
estimates for the most insensitive parameters as a result of
ill-conditioning. However, by automatically scaling the model
parameters using the information obtained by the principal
component sensitivity analysis this ill-conditioning can be
eliminated. In this way it is possible to obtain accurate
estimates for the insensitive model parameters such as Ry, Ry
and R, without recourse to direct measurement techniques.
The scaling procedure will now be discussed.

V. FULL AUTOMATIC SCALING

The analysis of the eigensystem of the Hessian matrix
employed in the sensitivity analysis provides a basis for
a transformation of the model space (Cgs, Ri,Cds etc.)
to a new set of uncorrelated variables 1; (which are the
eigenvectors or principal component directions given by the
columns in Tables I and II). This transformation is equivalent
to a rotation of the coordinate axes so that a unit change
in y; has the effect of altering the model parameters by an
amount proportional to the ¢th eigenvector in @ (which is the

SENSITIVITY ANALYSIS AFTER FULL AUTOMATIC SCALING

Optimizable Final Principal component directions
Parameter I Value I
Vbo 0.743 1.0 0 0 o]
Vsat 78527 0 1.0 0 0
w 0.1083 () 0] 1.0 0
N 3.17E23 0 0 o | 7| o
(4]
rd 2.534 0 0 0 1.0
Sensitivity coefficient l 1.0 1.0 1.0 1.0
(eigenvalue)

ith column in Tables I and IT). Such a change would effect
the error function value by an amount which is proportional
to the 7 th eigenvalue D,, (which is the sensitivity coefficient
in the 4th column in Tables I and II). If the new variables
y; are scaled in inverse proportion to the square root of their
corresponding eigenvalues D,;, Fig. 3, then a unit change in
any of the y; variables will have equal effect on the sum of
squares function for all ¢. A sensitivity analysis obtained for
this system is shown in Table III, The error function is now
locally spherical, and the model condition number is 1. Since
the error function is now equally sensitive to moves in each
of the principal component directions the model parameters
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TABLE 1V
OPTIMIZATION RESULTS FOR PLESSEY F20 4 x 75 pm DEVICE

Plessey F20 4x75um MESFET I

Electrical Equivalent Circuit Model Physics Based Equivalent Circuit Model
(one bias point) {three bias points})
Scaling Technique{] No Scaling |Scaling to Unity| Full Automatic Scaling|i No Scaling | Scaling to Unity | Full Automatic Scaling
Total Iterations 247 165 6 300 66 14
Final RMS Error 0.00712 0.00709 0.00700 0.0455 0.0377 0.0377
Comment starting point] starting point starting point non-unique |physical solution physical solution
dependent dependent dependent

* Optimization did not converge before 300 iterations

(Cgs, Ri,Cds etc.) are all optimized with similar accuracy.
Furthermore, the spherically shaped error function provides
the fastest convergence rate possibie. The transformation used
is
z= Q—D—l /2 g’
where z is the new set of optimization variables, () is
the matrix of eigenvectors of the Hessian, D is the diag-
onal matrix of eigenvalues and y is the matrix of model
parameters. Since ¢} and D are functions of z the transfor-
mation must be recomputed periodically during optimization
to keep the condition number after scaling small as the
optimization variables are adjusted. Provided the model is
not ill-conditioned (after scaling) then the search direction
chosen by the Gauss—Newton optimization algorithm is not
dependent upon parameter scaling. Therefore the condition
number must only be kept less than about 10%, the threshold
for ill-conditioning. Recomputation is needed more often if the
function is locally very nonlinear (this overhead is not great
for small-signal MESFET modelling) or if the starting values
are far from the solution.

VI. SUB- SPACE REDUCTION

When the condition number is excessively large, e.g. 10,
full automatic scaling involves computations with both very
large and small eigenvalues with consequent rounding and
truncation errors. As a result the accuracy of the final solution
and the convergence of the numerical routines used decreases.
This effect is particularly pronounced as the number of model
parameters increase. In order to improve the performance of
the numerical optimization of such models, the model can
be partitioned on the basis of the distribution of eigenvalues
in Tables I and II, i.e. using the transformed model space.
Since the transformed variables are uncorrelated they can
be systematically divided into groups of similarly sensitive
variables. We call this technique sub-space reduction because
two or more sub-spaces are formed each with smaller condition
numbers than the original full-space problem. For example,
the equivalent circuit model giving the sensitivity analysis of
Table I could be divided into two sub-spaces bounded by the
sensitivity coefficients 3x 102 —0.1 and 0.06—9 x 10~ having

condition numbers of about 3 x 10 and 7 x 103 respectively.
Full automatic scaling of these sub-spaces will be performed
considerably more accurately than for the full-space model
with a condition number of 3 x 10°. Using this technique each
sub-space is optimized in turn until no further improvement
can be made.

VII. RESULTS

The full automatic scaling and sub-space reduction tech-
niques presented above have been compared with conventional
optimization techniques popularly used for small-signal MES-
FET device modelling. The sum of squares of the errors
between the measured data and the model responses was
minimized using a Gauss—-Newton algorithm. The modelling
procedure was performed with (i) full automatic parameter
scaling and sub-space reduction, (ii) no parameter scaling,
and (iii) parameter scaling to unity, Tables IV and V. Scaling
the parameters to unity by simply dividing each by their own
value often improves convergence since it removes the effect
of different units. Models were extracted for several examples
of the Plessey F20 4 x 75 pum on-wafer MESFET and the NEC
NE71083 [21] packaged MESFET. Both devices are used in
I and J bands and apart from the effect of the package they
provide similar performance. A packaged device was chosen
because the package adds complexity to the device model
making it more difficult to extract precise model parameters.
S-parameters of both MESFETs were measured at bias points
across their entire operating range, the packaged devices were
measured in a test fixture de-embedded using a Thru-Reflect-
Line calibration [22]. The on-wafer devices were measured
using Line-Reflect-Match calibration [23].

The on-wafer devices were modelled using the topology
given in Fig. 1. Adding transmission lines on the gate and
drain, and geometric capacitances between the gate, drain and
source was sufficient to simulate the package of the NE71083
device, Fig. 1. Both devices were characterized at a single bias
point using the electrical -equivalent circuit model, and also
over multiple bias points using the physics based equivalent
circuit model. The optimizable parameters for the physics
based model are the extrinsic bias independent equivalent
circuit model components (including package components
for the NE71083) and the technological device parameters
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TABLE V
OpTiMIZATION REsuLTs FOR NEC NE71083 DEVICE

NEC NE71083 MESFET

Electrical Equivalent Circuit Model Physics Based Equivalent Circuit Model
{one bias point) (three bias points)

Scaling Technique|] No Scaling |Scaling to Unity | Full Automatic Scaling{| No Scaling | Scaling to Unity | Full Automatic Scaling
Total Iterations 300° 300 16 300 300° 46
Final RMS Error 0.03902 0.03654 0.03648 0.06080 0.04523 0.04508
Cominent starting point| starting point starting point non-unique |physical solution physical solution
dependent dependent dependent

* Optimization did not converge before 300 iterations

from which the intrinsic component values are derived. The
physics based equivalent circuit model preserves the inherent
correlations between model components and provides reliable
physically representative values for the equivalent circuit
elements [16].

Tables IV and V compare typical performance of the three
scaling techniques outlined above in extracting the parameters
of the device models. Modelling the on-wafer devices is
described first. The single bias point equivalent circuit model
provided the closest match to measured scattering parameters.
However, it did not provide reliable physically representative
component values and the final solution achieved proved to
be quite dependent upon the choice of starting values. All
three scaling techniques converged to similar solutions from
identical starting values, although sub-space reduction gave the
lowest rms etror. Scaling the parameter values to unity enabled
the error to be reduced more quickly in the first few iterations
than with no parameter scaling, but in the following iterations
both methods converged extremely slowly. The sensitivity
analysis (Table I) shows that the model is almost singular,
which is the reason for the slow convergence. Initially the error
reduced quickly as the sensitive components were adjusted but
many iterations were subsequently used as changes made to
the values of the insensitive components had little effect on
the error function. Therefore, using full automatic scaling and
sub-space reduction the model space was optimized in two
sub-spaces giving a dramatic improvement in convergence:
With sub-space reduction (each sub-space scaled once) just 6
iterations in total were required to obtain the final solution, and
after 4 iterations the error was smaller than the final solutions
obtained by unity parameter scaling in 165 iterations (scaled
three times) and no parameter scaling in 247 iterations. The
largest variance between the solutions was seen in the values
of the least sensitive components, e.g. the parasitic resistances,
which were resolved more accurately by sub-space reduction
since the final rms error was lowest with this method.

A physical solution was obtained using the physics based
equivalent circuit model. With no parameter scaling the rate of
convergence was slow and the optimization was stopped with-
out converging after 300 iterations. A solution was obtained
using full automatic scaling (sub-space reduction was not used
since the condition number was sufficiently small—2.35 x 10%)

Measured
Modelled

fi 2 00000
fe: 18,0000

Measured
Modelled

f1' 2. 00000
f2- 18. 0000

r -5 0 1 -1 -3 -2

Fig. 4. S-Parameter Fits for Sample Plessey F20 4 x 75 um Device:
(Vgs = 0.0,—-0.8.,-1.5 V; 1, = 5.0 V (Only Vs = —0.8 V shown
for S11, S12, S22).

in just 14 iterations compared to 66 when the parameters
were scaled to unity, Table IV. In both solutions the final
values of the technological parameters were similar but the
insensitive parameters such as the parasitic resistances had
more physically representative values in the solution obtained
using full automatic scaling. The drain currents simulated by
the physics based model—12 mA, 29 mA and 57 mA also
matched the measurements closely—12 mA, 30 mA and 56
mA respectively. Sample fits obtained for the F20 process
4 x 75 pm device using full automatic scaling are shown in
Fig. 4 later in the article. S11, S22 and S12 are only shown
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FINAL OPTIMIZED PARAMETER VALUES FOR THE PH$§?SL§A:;ID MODEL OF THE PLESSEY F20 4 X 75 pum DEVICE
Physical Optimized Bias Independent Optimized I
Parameters Value Parameters Value
Vbo (V) 0.743 Rg (chms) 2.786
Vsat {ms™) 78527 Lg (nH) 0.010
W (m) 0.1083 Rs (ohms) 1.764
N (m™) 3.17E23 Ls (nH) 0.019
LG (m) 0.5529 Cds (pF) 0.058
a0 1.099 ILd H) 0.082
r01 342.64 Rd (ohms) 2.534
102 95.46
03 3.881

TABLE VII

403

FNAL EQUIVALENT CIRCUIT ELEMENT VALUES DERIVED FROM THE

Prysics BASED MODEL FOR THE PLESSEY F20 4 X 75 yum DEVICE

Bias Dependent
Parameter

Cgs (pF) 0.2261
Cdg (pF) 0.0300
gm (mS) 27.477
1 (pSec) 1.1906
Ri (ohms) 8.8034
Lg (nH) 0.0042
Rds (ohms) 218.29

at one bias point since they are very similar over the range
of bias considered. The final optimized parameter values are
shown in Table VI and Table VII shows the corresponding
intrinsic equivalent circuit component values at the bias points
measured. The gate inductance L, consists of an intrinsic bias
dependent part representing the phase delay in the gate and an
extrinsic bias independent part representing the inductance of
the gate contact. Comparison of the optimized technological
device parameters with the device specification indicates that
this solution is a good representation of the actual device
physics.

Modelling the packaged device was more difficult since
the equivalent circuit topology is considerably more complex
than it is for on-wafer devices. The electrical equivalent
circuit model uses 18 parameters and has a condition num-
ber of the order 10'', and the physics based equivalent
circuit model uses 23 parameters with a condition number
also of the order 10'!. Starting values were estimated for
the package components in the electrical equivalent circuit
model by trial and error. But, since the technological pa-
rameters were known within small tolerances they could

be fixed while the package components were optimized to
provide a reasonable starting approximation for the package in
the physics based equivalent circuit model. The optimization
converged very slowly for both the electrical and physics based
equivalent circuit models when no parameter scaling and unity
parameter scaling were used, not finding a solution in less
than 300 iterations. Using full automatic scaling in two sub-
spaces solutions were found for the electrical and physics
based equivalent circuit models in 16 and 46 iterations re-
spectively. Once more the electrical equivalent circuit model
gave the closest fit to the measured data but the more con-
strained physics based model gave more physically repre-
sentative component values. The largest variance between
models was seen in the values of the insensitive components,
i.e. the package and parasitic components. Fig. 5 (on the
next page) shows fits obtained for an NE71083 device using
the physics based equivalent circuit model. By fitting this
model at a larger number of bias points the sensitivity of
some model parameters can be improved (thus improving the
model uniqueness), this is particularly true for the package
and parasitic components.
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f1. 2. 00000
f2 18.0000

Modalled
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fer 18 0000

r -5 0 1 -1 -3 -2

Fig. 5. S-Parameter Fits for Sample NEC NE71083 Device: (Vy, = 0.0,
—0.4,-0.8 V; Vg; = 5.0 V(Only Vs = —0.4 V shown for S11, S12, $22).

VIII. CONCLUSIONS

The degree of ill-conditioning in the small signal MESFET
equivalent circuit model has been formally quantified using
a systematically formulated sensitivity analysis procedure.
The condition number is typically very large since the error
function most often used is sensitive to changes in some
combinations of model parameters but extremely insensitive
to changes in other combinations. Consequently there is a
good deal of uncertainty associated with the optimized values
of the insensitive components, and the convergence of the
optimization is slow. Using the principal components sensi-
tivity analysis we have been able to estimate for the first time
how reliable the optimized component values are in the final
solution.

A new optimization technique has been presented which
eliminates ill-conditioning thus ensuring rapid convergence
and accurate solutions. By performing a coordinate transfor-
mation of the model variables to the principal component axes
which are uncorrelated, the new principal component variables
can be automatically scaled providing uniform sensitivity for
all variables, i.e. a condition number of unity. For extremely
ill-conditioned models numerical rounding and truncation er-
rors reduce the effectiveness of this scaling technique. Such
models can be systematically partitioned into smaller sub-
spaces of the transformed model space on the basis of the
sensitivities of the uncorrelated principal component variables.
Separate optimization of sensitive and insensitive sub-spaces

provides a marked improvement in convergence and a reduc-
tion in the uncertainty associated with the values of insensitive
model components such as the parasitic resistances.

If the values of the intrinsic equivalent circuit components
are derived from optimizable technological device parameters
over multiple bias points the condition number is significantly
improved. Consequently the convergence of the numerical
routines used is also improved and the solution is resolved
with more precision. Since the intrinsic components of the
equivalent circuit model are now constrained to obey the
device physics the model is unable to fit the measured data
so closely. It does, however, preserve the inherent correlation
between the model components and provides more physically
representative values for the equivalent circuit elements than
could otherwise be achieved.

Unique and physically representative small signal models
have been determined for a Plessey 4 x 75 um MESFET
and an NEC NE71083 packaged MESFET using the new
optimization strategy. For both devices the convergence of the
new optimization technique was significantly faster than con-
ventional techniques. In addition insensitive parameters such
as the parasitic resistances were determined more uniquely
since the sensitivity of the error function to these parameters
was enhanced by automatic scaling. These observations are
particularly pertinent to the packaged NE71083 device since
the model is more complex and more ill-conditioned than the
on-wafer device model. Consequently it is very difficult to
obtain a physically representative solution for the packaged
device model using conventional optimization strategies.
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